3.137 \(\int \frac{x}{\log ^{\frac{3}{2}}(a x^n)} \, dx\)

Optimal. Leaf size=69 \[ \frac{2 \sqrt{2 \pi } x^2 \left (a x^n\right )^{-2/n} \text{Erfi}\left (\frac{\sqrt{2} \sqrt{\log \left (a x^n\right )}}{\sqrt{n}}\right )}{n^{3/2}}-\frac{2 x^2}{n \sqrt{\log \left (a x^n\right )}} \]

[Out]

(2*Sqrt[2*Pi]*x^2*Erfi[(Sqrt[2]*Sqrt[Log[a*x^n]])/Sqrt[n]])/(n^(3/2)*(a*x^n)^(2/n)) - (2*x^2)/(n*Sqrt[Log[a*x^
n]])

________________________________________________________________________________________

Rubi [A]  time = 0.0488579, antiderivative size = 69, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {2306, 2310, 2180, 2204} \[ \frac{2 \sqrt{2 \pi } x^2 \left (a x^n\right )^{-2/n} \text{Erfi}\left (\frac{\sqrt{2} \sqrt{\log \left (a x^n\right )}}{\sqrt{n}}\right )}{n^{3/2}}-\frac{2 x^2}{n \sqrt{\log \left (a x^n\right )}} \]

Antiderivative was successfully verified.

[In]

Int[x/Log[a*x^n]^(3/2),x]

[Out]

(2*Sqrt[2*Pi]*x^2*Erfi[(Sqrt[2]*Sqrt[Log[a*x^n]])/Sqrt[n]])/(n^(3/2)*(a*x^n)^(2/n)) - (2*x^2)/(n*Sqrt[Log[a*x^
n]])

Rule 2306

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log
[c*x^n])^(p + 1))/(b*d*n*(p + 1)), x] - Dist[(m + 1)/(b*n*(p + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x]
, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]

Rule 2310

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Dist[(d*x)^(m + 1)/(d*n*(c*x^n
)^((m + 1)/n)), Subst[Int[E^(((m + 1)*x)/n)*(a + b*x)^p, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, d, m, n, p}
, x]

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{x}{\log ^{\frac{3}{2}}\left (a x^n\right )} \, dx &=-\frac{2 x^2}{n \sqrt{\log \left (a x^n\right )}}+\frac{4 \int \frac{x}{\sqrt{\log \left (a x^n\right )}} \, dx}{n}\\ &=-\frac{2 x^2}{n \sqrt{\log \left (a x^n\right )}}+\frac{\left (4 x^2 \left (a x^n\right )^{-2/n}\right ) \operatorname{Subst}\left (\int \frac{e^{\frac{2 x}{n}}}{\sqrt{x}} \, dx,x,\log \left (a x^n\right )\right )}{n^2}\\ &=-\frac{2 x^2}{n \sqrt{\log \left (a x^n\right )}}+\frac{\left (8 x^2 \left (a x^n\right )^{-2/n}\right ) \operatorname{Subst}\left (\int e^{\frac{2 x^2}{n}} \, dx,x,\sqrt{\log \left (a x^n\right )}\right )}{n^2}\\ &=\frac{2 \sqrt{2 \pi } x^2 \left (a x^n\right )^{-2/n} \text{erfi}\left (\frac{\sqrt{2} \sqrt{\log \left (a x^n\right )}}{\sqrt{n}}\right )}{n^{3/2}}-\frac{2 x^2}{n \sqrt{\log \left (a x^n\right )}}\\ \end{align*}

Mathematica [A]  time = 0.0463273, size = 78, normalized size = 1.13 \[ -\frac{2 x^2 \left (a x^n\right )^{-2/n} \left (\left (a x^n\right )^{2/n}-\sqrt{2} \sqrt{-\frac{\log \left (a x^n\right )}{n}} \text{Gamma}\left (\frac{1}{2},-\frac{2 \log \left (a x^n\right )}{n}\right )\right )}{n \sqrt{\log \left (a x^n\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/Log[a*x^n]^(3/2),x]

[Out]

(-2*x^2*((a*x^n)^(2/n) - Sqrt[2]*Gamma[1/2, (-2*Log[a*x^n])/n]*Sqrt[-(Log[a*x^n]/n)]))/(n*(a*x^n)^(2/n)*Sqrt[L
og[a*x^n]])

________________________________________________________________________________________

Maple [F]  time = 0.171, size = 0, normalized size = 0. \begin{align*} \int{x \left ( \ln \left ( a{x}^{n} \right ) \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/ln(a*x^n)^(3/2),x)

[Out]

int(x/ln(a*x^n)^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\log \left (a x^{n}\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/log(a*x^n)^(3/2),x, algorithm="maxima")

[Out]

integrate(x/log(a*x^n)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/log(a*x^n)^(3/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\log{\left (a x^{n} \right )}^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/ln(a*x**n)**(3/2),x)

[Out]

Integral(x/log(a*x**n)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\log \left (a x^{n}\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/log(a*x^n)^(3/2),x, algorithm="giac")

[Out]

integrate(x/log(a*x^n)^(3/2), x)